## **States of Matter**



#### Matter

## Anything that has mass and takes up space

## • Matter is basically "stuff." If it has substance, it is matter.

#### **States of Matter**

• 4 States of matter: **o**Solid oLiquid oGas **o**Plasma

 Each is designated by the energy, movement, and behavior of the particles

#### **States of Matter: Animations**

• <u>http://www.media.pearson.com.au/schools/cw/au\_sch\_whalley\_sf1\_1/i</u> <u>nt/matter.html</u>

States of Matter





• <u>http://www.media.pearson.com.au/schools/cw/au\_sch\_whalley\_sf1\_1/i</u> <u>nt/2\_slg.html</u>

#### **States of Matter**

- Each state of matter has a different:
  - Energy level of the particles
  - Amount of movement
  - Spacing of the particles
  - Temperature

• ENERGY of a particle determins the kinetic energy (*and thus the temperature and state*) of a substance

Kinetic Theory of Matter (AKA: Atomic Theory)

- 3 Parts of the Kinetic Theory
- All matter is composed of small particles (atoms, molecules, ions)
- 2) Particles are in constant, random motion
- Particles collide with each other and the sides of their container

#### Solids

- Energy: • Very little energy
- Movement:
  - Vibrate against each other, don't move around much

#### Particle Spacing:

- Very little space between
   particles
- Volume/Shape

   Definite volume and definite shape



## Energy: Increased energy from solid

Liquids

- Movement:
  - Flow around each other
- Particle Spacing:
  - Particles have space between them
- Volume/Shape

   Definite volume but
   no definite shape





#### • Energy: • Tons of energy!

- Movement:
  - Flying past each other
    - Enough energy to escape the attractive forces of other particles

Gas

- Particle Spacing:
  - Far apart

Volume/Shape

 No definite volume and
 No definite shape



#### Plasma

- Plasma is electrically charged gas
- Plasma is created at very very high temperatures (greater than 10,000°F)
  - Seen in sun, stars, and lightning
- Most abundant state of matter in the UNIVERSE
   Not the most abundant on Earth





#### Changes in State

• ENERGY of the particles influences the state of matter

• Temperature is just something we can easily measure. Energy is more complicated to measure..

#### Increase energy

Molecules move faster and spread out
Temperature increases

#### • Decrease energy

Molecules move slower and are closer together
 Temperature decreases



## Solid to Liquid and Back

# Melting Point OPoint at which

solids become liquid

Gallium is a metal with a very low melting point. Here, a gallium spoon melts in hot water...

Freezing Point

 Point at which
 liquid become solid



#### Hot iron ball placed onto brick of ice



## Water crystallizing into snow



## Liquid to Gas and Back

#### <u>Boiling Point</u> -Point at which liquid becomes gas

- AKA: vaporization
- Ex: water boiling on a stove
- <u>Condensation</u> gas changes to liquid
  - Ex: Mirror fogging up, dew on grass, etc





### Solid to Gas and Back

- <u>Sublimation</u>- change from solid directly to gas
  - Ex: Dry Ice



youtube.com/atbristol

<u>Deposition</u> – change from gas directly to solid
 • Ex: Snow and Hail





## Honors: Phase Change Diagram

- $\underline{\mathbf{A}}$  the substance is entirely a solid
- $\underline{\mathbf{B}}$  the substance is both solid and liquid
- <u>C</u> the substance is entirely a liquid
- <u>D</u> the substance is both a liquid and a gas
- <u>E</u> the substance is entirely a gas

 When changing from solid to liquid, the substance isn't entirely liquid until the graph has a positive slope



