ACCELERATION
\square Remember that:
\square Speed is a measure of distance over time

- How long it takes you to get from one place to another
\square Velocity was speed in a direction

Scalar vs Vector

\square Scalar (Just a number)
\square Distance
\square Speed
\square Magnitude of Acceleration
\square Vector (A Number and A Direction)
\square Displacement
\square Velocity
\square Acceleration

What is acceleration?

\square Acceleration is the rate of change of velocity.
\square A change in velocity can be caused by:
\square Change in speed

- Speed up or slow down
\square Change in direction

3 ways to cause acceleration

\square Increasing speed
\square Example: Car speeds up at green light
\square Decreasing speed
\square Example: Car slows down at stop light
\square Changing Direction
\square Example: Car takes turn (can be at constant speed)

Zero Acceleration

\square For acceleration to be zero, the velocity cannot be changing
\square ONLY when you are traveling at a constant speed in one direction
\square So, would it still be zero if you were traveling at a constant speed in a circle?

The Math

\square Acceleration $=a=$ change in velocity divided by the change in time
$\square A=\underline{V}_{\underline{f}}-V_{i}$
\dagger
\square Units $=\mathrm{m} / \mathrm{s}^{2}$
$\square \mathrm{m} / \mathrm{s}^{2}$ ALWAYS means acceleration

FORMULAS:

$\square A=\frac{V_{f}-V_{i}}{t}$
$\square T=\frac{V_{f}-V_{i}}{A}$
$\square V_{f}=(A x t)+V_{i}$

The numbers never lie...
\square A SMALL acceleration means velocity is increasing gradually
\square A LARGE acceleration means velocity is increasing rapidly
\square A POSITIVE acceleration means an object is speeding up
\square A NEGATIVE acceleration means an object is slowing down
\square This is called deceleration

Example

\square You are driving from school home and your velocity goes from $10 \mathrm{~m} / \mathrm{s}$ to 40 m / s in 5 secs .
\square What is your acceleration?

Example

\square If a football is thrown from rest with an acceleration of $8.5 \mathrm{~m} / \mathrm{s}^{2}$, and had an final velocity of $25 \mathrm{~m} / \mathrm{s}$, how long was the football accelerating?

Gravity and Acceleration

\square Gravity is the force that pulls everything toward the center of the Earth
\square Acceleration due to Gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$

\square In a vacuum, things fall towards the earth at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ every second

- A vacuum is a space entirely void of matter
- When not in a vacuum, air resistance will slow down a falling object.

Ball and a Feather in a Vacuum

Gravity and Slinky!

\square Just cuz it looks cool...
\square The top of the slinky
Is falling, but the bottom
Of the slinky is trying
To recoil back to the top
Of the slinky.

Gravity and People!

\square Amazing...

Falling From Space

\square In a vacuum, things fall towards the earth at
$9.8 \mathrm{~m} / \mathrm{s}^{2}$ every second

- Jumps from over 24 MILES up

■ At exactly 1 second, traveling at $9.8 \mathrm{~m} / \mathrm{s}$

- At exactly 2 seconds, traveling at $19.6 \mathrm{~m} / \mathrm{s}$
- At exactly 5 seconds, traveling at $49 \mathrm{~m} / \mathrm{s}$

Gravity and Acceleration

\square In real life, sometimes wind resistance causes objects to stop accelerating and reach a maximum velocity

- This is what causes
"Terminal Velocity"
\square Terminal Velocity for a falling Human is $\sim 56 \mathrm{~m} / \mathrm{s}(\sim 120 \mathrm{mi} / \mathrm{hr})$

TERMINAL VELOCITY

Law of Universal Gravitation

- Technically, gravity pulls everything towards everything else
- Every object exerts a gravitational pull on every other object. But the pulls aren't all equal. They depend on a few things
- The gravitational force between two objects depends on 2 things:
- The MASS of the both objects
- As the masses increase, the gravitational force INCREASES
- The DISTANCE between the two objects
- As the distance increases, the gravitational force DECREASES.

Universal Gravitation: Math

- $M_{1}=$ mass of object 1
- $M_{2}=$ mass of object 2
- $r=$ distance between 2 objects

- $G=$ universal gravitational constant

$$
=6.6726 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}
$$

What is the gravitational force between you (at 150lbs) and the earth?

- $F=\underline{G}\left(M_{1} \frac{*}{r^{2}} M_{2}\right)$
- $F=\frac{6.67428 \times 10^{-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}\left(5.97219 \times 10^{24} \mathrm{~kg}^{*} 75 \mathrm{~kg}\right)}}{6378100 \mathrm{~m}^{2}}$
- $F=9.8017 \mathrm{~N}$

Universal Gravitation: Math

Compare that to 2 students that each have a mass of 135 lbs and are only 1 m apart.
$\left.\square F=\frac{G\left(M_{1}\right.}{r^{2}} * M_{2}\right)$
$\square \mathrm{F}=\frac{6.67428 \times 10^{-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}(75 \mathrm{~kg} * 75 \mathrm{~kg})}}{1 \mathrm{~m}^{2}}$
$\square F=1.001 \times 10-8 \mathrm{~N}$ OR 0.000000010011 N

Compare that to gravitational force between you (at 150lbs) and the earth?
$\mathrm{F}=9.8017 \mathrm{~N}$

