Weight and Mass

Life on Mars

- So imagine that you are on planet Mars. Is the amount of matter that makes you up different?
- Is the force pulling you downward different?

Weight

- <u>Weight</u> The force pulling down on an object created by earth's gravity (9.8m/s²)
 - Weight is a FORCE
 - Therefore, units = **NEWTONS** (N)
- Your <u>Weight</u> will be different on Earth and Mars
 - Earth's gravity = 9.8m/s^2
 - Moon's gravity = 1.6m/s^2
 - Weight changes with gravity

Calculating Weight

Formula:Force Weight = Mass * GravitySymbolsFw = m * gUnits $(N) = (kg) (m/s^2)$

 Remember to use Newtons NOT Pounds since we are Scientific. (1 N = 2.2 lbs)

Look Familiar?

Formula:Force Weight = Mass * Accel due to GravitySymbolsFw= m * gFormula:Force= Mass * AccelSymbolsF= m * A

Calculating Weight

Example:

If you have a mass of 22kg on Earth (9.8m/s^2) , what is your weight?

- $Fw = 22kg * 9.8m/s^2$
- $Fw = 215.6 \text{ kg} \text{*m/s}^2$
- $F_W = 215.6 N$

If you have a mass of 22kg on Mars (with 1/3 the gravity of Earth), what is your weight?

- $Fw = 22kg * ((9.8m/s^2) * (1/3))$
- $Fw = 22kg * 3.27m/s^2$
- $Fw = 71.94 \text{ kg} \text{*m/s}^2$
- $F_W = 71.94 N$

Mass

- <u>Mass</u> amount of matter that makes up an object.
 - Units = kg

- Your <u>Mass</u> will be the same on Earth or Mars.
 - You have the same amount of matter everywhere.

Weight vs. Mass

- <u>Weight</u> is measure of the force of gravity acting on your mass
 Weight will be different everywhere
 Units = N (because it is a FORCE)
 <u>Mass</u> is the same everywhere, regardless of gravity
 - Mass will always remain the same
 - Units = kg

Friction If gravity is always pulling us down (or if we are moving) we are always going to be in contact with something.

- <u>Friction</u> is a force that results from the relative motion between objects
 - AKA: The force that works against and slows motion because *the surface of any object is rough*

Friction

Some friction is useful

- Walking (friction between ground and foot)
- Driving (friction between ground and tire)
- Brakes (friction between brake pad and the disc (attached to wheel)
- Writing (friction between paper and pen/pencil)
- Throwing (friction between hand and ball)

• Some friction is unwanted

- Overheating in a machine/engine is caused by friction
- Any moving that slows down when it is not wanted
- Friction makes moving heavy objects much harder

Without Friction, we may struggle...

Man

And his best friend

Recap - Weight, Gravity and Friction

- Gravity pulls everything toward center of earth.
 - 9.8m/s² (Accelearation)
- Weight is a measure of the force of gravity pulling on an object's mass.
- Friction is a force caused by the relative motion between 2 objects.

Multiple Forces Acting At Once

There will always be MORE than 1 force acting on an object at a time.

• <u>Net force</u> = total of all forces

There are 2 options:

<u>Balanced forces</u>

 <u>Equilibrium</u> = all forces on an object are balanced and no change in movement occurs

<u>Unbalanced forces</u>

- Net forces do not equal zero
- Motion will occur in the direction of the Net Force

Free Body Diagrams - HONORS

- There is a box on the table.
- What forces are acting on this box?
 - Weight
 - Gravity pulling down on the box
 - Normal Force
 - Table pushing up
- What other forces can act on the box?
 - Push to the right (or pull from the right)
 - Friction force
 - In the opposite direction of the push

Free Body Diagrams - HONORS

- Identify the value for:
 - Force of Weight:
 - Normal Force:
 - Friction Coefficient:
 - "Push":

- Is this box moving?
 - If so, which direction and with what unbalanced force?

Free Body Diagrams - HONORS

• This can be shown 2 different ways:

- Arrows pointing towards the center of the object
- Arrows originating from the center of the object.

